Automationscribe.com
  • Home
  • AI Scribe
  • AI Tools
  • Artificial Intelligence
  • Contact Us
No Result
View All Result
Automation Scribe
  • Home
  • AI Scribe
  • AI Tools
  • Artificial Intelligence
  • Contact Us
No Result
View All Result
Automationscribe.com
No Result
View All Result

Coaching a Mannequin on A number of GPUs with Information Parallelism

admin by admin
December 30, 2025
in Artificial Intelligence
0
Coaching a Mannequin on A number of GPUs with Information Parallelism
399
SHARES
2.3k
VIEWS
Share on FacebookShare on Twitter


import dataclasses

import os

 

import datasets

import tqdm

import tokenizers

import torch

import torch.distributed as dist

import torch.nn as nn

import torch.nn.purposeful as F

import torch.optim.lr_scheduler as lr_scheduler

from torch import Tensor

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.utils.knowledge.distributed import DistributedSampler

 

# Construct the mannequin

@dataclasses.dataclass

class LlamaConfig:

    “”“Outline Llama mannequin hyperparameters.”“”

    vocab_size: int = 50000  # Dimension of the tokenizer vocabulary

    max_position_embeddings: int = 2048  # Most sequence size

    hidden_size: int = 768  # Dimension of hidden layers

    intermediate_size: int = 4*768  # Dimension of MLP’s hidden layer

    num_hidden_layers: int = 12  # Variety of transformer layers

    num_attention_heads: int = 12  # Variety of consideration heads

    num_key_value_heads: int = 3  # Variety of key-value heads for GQA

 

 

class RotaryPositionEncoding(nn.Module):

    “”“Rotary place encoding.”“”

 

    def __init__(self, dim: int, max_position_embeddings: int) -> None:

        “”“Initialize the RotaryPositionEncoding module

 

        Args:

            dim: The hidden dimension of the enter tensor to which RoPE is utilized

            max_position_embeddings: The utmost sequence size of the enter tensor

        ““”

        tremendous().__init__()

        self.dim = dim

        self.max_position_embeddings = max_position_embeddings

        # compute a matrix of ntheta_i

        N = 10_000.0

        inv_freq = 1.0 / (N ** (torch.arange(0, dim, 2) / dim))

        inv_freq = torch.cat((inv_freq, inv_freq), dim=–1)

        place = torch.arange(max_position_embeddings)

        sinusoid_inp = torch.outer(place, inv_freq)

        # save cosine and sine matrices as buffers, not parameters

        self.register_buffer(“cos”, sinusoid_inp.cos())

        self.register_buffer(“sin”, sinusoid_inp.sin())

 

    def ahead(self, x: Tensor) -> Tensor:

        “”“Apply RoPE to tensor x

 

        Args:

            x: Enter tensor of form (batch_size, seq_length, num_heads, head_dim)

 

        Returns:

            Output tensor of form (batch_size, seq_length, num_heads, head_dim)

        ““”

        batch_size, seq_len, num_heads, head_dim = x.form

        dtype = x.dtype

        # remodel the cosine and sine matrices to 4D tensor and the identical dtype as x

        cos = self.cos.to(dtype)[:seq_len].view(1, seq_len, 1, –1)

        sin = self.sin.to(dtype)[:seq_len].view(1, seq_len, 1, –1)

        # apply RoPE to x

        x1, x2 = x.chunk(2, dim=–1)

        rotated = torch.cat((–x2, x1), dim=–1)

        output = (x * cos) + (rotated * sin)

        return output

 

 

class LlamaAttention(nn.Module):

    “”“Grouped-query consideration with rotary embeddings.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.hidden_size = config.hidden_size

        self.num_heads = config.num_attention_heads

        self.head_dim = self.hidden_size // self.num_heads

        self.num_kv_heads = config.num_key_value_heads  # GQA: H_kv < H_q

 

        # hidden_size should be divisible by num_heads

        assert (self.head_dim * self.num_heads) == self.hidden_measurement

 

        # Linear layers for Q, Ok, V projections

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)

        self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)

        self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)

        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

 

    def ahead(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:

        bs, seq_len, dim = hidden_states.measurement()

 

        # Venture inputs to Q, Ok, V

        query_states = self.q_proj(hidden_states).view(bs, seq_len, self.num_heads, self.head_dim)

        key_states = self.k_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)

        value_states = self.v_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)

 

        # Apply rotary place embeddings

        query_states = rope(query_states)

        key_states = rope(key_states)

 

        # Transpose tensors from BSHD to BHSD dimension for scaled_dot_product_attention

        query_states = query_states.transpose(1, 2)

        key_states = key_states.transpose(1, 2)

        value_states = value_states.transpose(1, 2)

 

        # Use PyTorch’s optimized consideration implementation

        # setting is_causal=True is incompatible with setting express consideration masks

        attn_output = F.scaled_dot_product_attention(

            query_states,

            key_states,

            value_states,

            attn_mask=attn_mask,

            dropout_p=0.0,

            enable_gqa=True,

        )

 

        # Transpose output tensor from BHSD to BSHD dimension, reshape to 3D, after which undertaking output

        attn_output = attn_output.transpose(1, 2).reshape(bs, seq_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output

 

 

class LlamaMLP(nn.Module):

    “”“Feed-forward community with SwiGLU activation.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        # Two parallel projections for SwiGLU

        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

        self.act_fn = F.silu  # SwiGLU activation operate

        # Venture again to hidden measurement

        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)

 

    def ahead(self, x: Tensor) -> Tensor:

        # SwiGLU activation: multiply gate and up-projected inputs

        gate = self.act_fn(self.gate_proj(x))

        up = self.up_proj(x)

        return self.down_proj(gate * up)

 

 

class LlamaDecoderLayer(nn.Module):

    “”“Single transformer layer for a Llama mannequin.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)

        self.self_attn = LlamaAttention(config)

        self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)

        self.mlp = LlamaMLP(config)

 

    def ahead(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:

        # First residual block: Self-attention

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        attn_outputs = self.self_attn(hidden_states, rope=rope, attn_mask=attn_mask)

        hidden_states = attn_outputs + residual

 

        # Second residual block: MLP

        residual = hidden_states

        hidden_states = self.post_attention_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states) + residual

        return hidden_states

 

 

class LlamaModel(nn.Module):

    “”“The complete Llama mannequin with none pretraining heads.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.rotary_emb = RotaryPositionEncoding(

            config.hidden_size // config.num_attention_heads,

            config.max_position_embeddings,

        )

 

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)

        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])

        self.norm = nn.RMSNorm(config.hidden_size, eps=1e–5)

 

    def ahead(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:

        # Convert enter token IDs to embeddings

        hidden_states = self.embed_tokens(input_ids)

        # Course of by way of all transformer layers, then the ultimate norm layer

        for layer in self.layers:

            hidden_states = layer(hidden_states, rope=self.rotary_emb, attn_mask=attn_mask)

        hidden_states = self.norm(hidden_states)

        # Return the ultimate hidden states

        return hidden_states

 

 

class LlamaForPretraining(nn.Module):

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.base_model = LlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

 

    def ahead(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:

        hidden_states = self.base_model(input_ids, attn_mask)

        return self.lm_head(hidden_states)

 

 

def create_causal_mask(batch: Tensor, dtype: torch.dtype = torch.float32) -> Tensor:

    “”“Create a causal masks for self-attention.

 

    Args:

        batch: Batch of sequences, form (batch_size, seq_len)

        dtype: Information kind of the masks

 

    Returns:

        Causal masks of form (seq_len, seq_len)

    ““”

    batch_size, seq_len = batch.form

    masks = torch.full((seq_len, seq_len), float(‘-inf’), system=batch.system, dtype=dtype)

                .triu(diagonal=1)

    return masks

 

 

def create_padding_mask(batch: Tensor, padding_token_id: int, dtype: torch.dtype = torch.float32) -> Tensor:

    “”“Create a padding masks for a batch of sequences for self-attention.

 

    Args:

        batch: Batch of sequences, form (batch_size, seq_len)

        padding_token_id: ID of the padding token

        dtype: Information kind of the masks

 

    Returns:

        Padding masks of form (batch_size, 1, seq_len, seq_len)

    ““”

    padded = torch.zeros_like(batch, system=batch.system, dtype=dtype)

                  .masked_fill(batch == padding_token_id, float(‘-inf’))

    masks = padded[:,:,None] + padded[:,None,:]

    return masks[:, None, :, :]

 

 

# Generator operate to create padded sequences of fastened size

class PretrainingDataset(torch.utils.knowledge.Dataset):

    def __init__(self, dataset: datasets.Dataset, tokenizer: tokenizers.Tokenizer,

                seq_length: int):

        self.dataset = dataset

        self.tokenizer = tokenizer

        self.seq_length = seq_length

        self.bot = tokenizer.token_to_id(“[BOT]”)

        self.eot = tokenizer.token_to_id(“[EOT]”)

        self.pad = tokenizer.token_to_id(“[PAD]”)

 

    def __len__(self):

        return len(self.dataset)

 

    def __getitem__(self, index):

        “”“Get a sequence of token ids from the dataset. [BOT] and [EOT] tokens

        are added. Clipped and padded to the sequence size.

        ““”

        seq = self.dataset[index][“text”]

        tokens: checklist[int] = [self.bot] + self.tokenizer.encode(seq).ids + [self.eot]

        # pad to focus on sequence size

        toklen = len(tokens)

        if toklen < self.seq_length+1:

            pad_length = self.seq_length+1 – toklen

            tokens += [self.pad] * pad_size

        # return the sequence

        x = torch.tensor(tokens[:self.seq_length], dtype=torch.int64)

        y = torch.tensor(tokens[1:self.seq_length+1], dtype=torch.int64)

        return x, y

 

# Load the tokenizer

tokenizer = tokenizers.Tokenizer.from_file(“bpe_50K.json”)

 

# Load the dataset

dataset = datasets.load_dataset(“HuggingFaceFW/fineweb”, “sample-10BT”, cut up=“practice”)

 

# Initialize the distributed setting

dist.init_process_group(backend=“nccl”)

rank = dist.get_rank()

local_rank = int(os.environ[“LOCAL_RANK”])

world_size = dist.get_world_size()

system = torch.system(f“cuda:{local_rank}”)

print(f“World measurement: {world_size}, Rank: {rank}, Native rank: {local_rank}. Utilizing system: {system}”)

 

# Create pretraining mannequin with default config, then wrap it in DDP

model_config = LlamaConfig()

mannequin = LlamaForPretraining(model_config).to(rank)

mannequin = DDP(mannequin, device_ids=[local_rank])

mannequin.practice()

 

# print the mannequin measurement

print(f“Mannequin parameters measurement: {sum(p.numel() for p in mannequin.parameters()) / 1024**2:.2f} M”)

print(f“Mannequin buffers measurement: {sum(p.numel() for p in mannequin.buffers()) / 1024**2:.2f} M”)

print(f“Mannequin precision(s): {set([x.dtype for x in model.state_dict().values()])}”)

 

# Coaching parameters

epochs = 3

learning_rate = 1e–3

batch_size = 64

seq_length = 512

num_warmup_steps = 1000

PAD_TOKEN_ID = tokenizer.token_to_id(“[PAD]”)

 

# DataLoader, optimizer, scheduler, and loss operate

dataset = PretrainingDataset(dataset, tokenizer, seq_length)

sampler = DistributedSampler(dataset, shuffle=False)

dataloader = torch.utils.knowledge.DataLoader(

    dataset,

    batch_size=batch_size,

    sampler=sampler,

    pin_memory=True,  # non-obligatory

    shuffle=False,

    num_workers=world_size,

)

optimizer = torch.optim.AdamW(

    mannequin.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e–8, weight_decay=0.1

)

num_training_steps = len(dataloader) * epochs

print(f“Variety of coaching steps: {num_training_steps} = {len(dataloader)} * {epochs}”)

warmup_scheduler = lr_scheduler.LinearLR(

    optimizer,

    start_factor=0.1, end_factor=1.0, total_iters=num_warmup_steps

)

cosine_scheduler = lr_scheduler.CosineAnnealingLR(

    optimizer,

    T_max=num_training_steps – num_warmup_steps,

    eta_min=0

)

scheduler = lr_scheduler.SequentialLR(

    optimizer,

    schedulers=[warmup_scheduler, cosine_scheduler],

    milestones=[num_warmup_steps]

)

loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_TOKEN_ID)

 

# begin coaching

for epoch in vary(epochs):

    pbar = tqdm.tqdm(dataloader, desc=f“Epoch {epoch+1}/{epochs}”)

    sampler.set_epoch(epoch)   # required for shuffling solely

    for batch_id, batch in enumerate(pbar):

        if batch_id % 1000 == 0 and rank == 0:

            # checkpoint the mannequin and optimizer state, solely on rank 0 course of

            torch.save({

                “mannequin”: mannequin.module.state_dict() if isinstance(mannequin, DDP) else mannequin.state_dict(),

                “optimizer”: optimizer.state_dict(),

                “scheduler”: scheduler.state_dict(),

                “epoch”: epoch,

                “batch”: batch_id,

            }, f“llama_pretraining_checkpoint.pth”)

        # get batched knowledge, transfer from CPU to GPU

        input_ids, target_ids = batch

        input_ids = input_ids.to(system)

        target_ids = target_ids.to(system)

        # create consideration masks: causal masks + padding masks

        attn_mask = create_causal_mask(input_ids) +

                    create_padding_mask(input_ids, PAD_TOKEN_ID)

        # extract output from mannequin

        logits = mannequin(input_ids, attn_mask)

        # compute loss: cross-entropy between logits and goal, ignoring padding tokens

        loss = loss_fn(logits.view(–1, logits.measurement(–1)), target_ids.view(–1))

        # backward with loss and gradient clipping by L2 norm to 1.0

        optimizer.zero_grad()

        loss.backward()

        torch.nn.utils.clip_grad_norm_(mannequin.parameters(), 1.0)

        optimizer.step()

        scheduler.step()

        pbar.set_postfix(loss=loss.merchandise())

        pbar.replace(1)

    pbar.shut()

 

# Save the mannequin

if rank == 0:

    torch.save(mannequin.state_dict(), “llama_pretraining_model.pth”)

    torch.save(mannequin.base_model.state_dict(), “llama_model.pth”)

 

# Clear up the distributed setting

dist.destroy_process_group()

Tags: DataGPUsModelMultipleParallelismtraining
Previous Post

Learn how to Facilitate Efficient AI Programming

Next Post

Construct an AI-powered web site assistant with Amazon Bedrock

Next Post
Construct an AI-powered web site assistant with Amazon Bedrock

Construct an AI-powered web site assistant with Amazon Bedrock

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Popular News

  • Greatest practices for Amazon SageMaker HyperPod activity governance

    Greatest practices for Amazon SageMaker HyperPod activity governance

    405 shares
    Share 162 Tweet 101
  • Speed up edge AI improvement with SiMa.ai Edgematic with a seamless AWS integration

    403 shares
    Share 161 Tweet 101
  • Optimizing Mixtral 8x7B on Amazon SageMaker with AWS Inferentia2

    403 shares
    Share 161 Tweet 101
  • Unlocking Japanese LLMs with AWS Trainium: Innovators Showcase from the AWS LLM Growth Assist Program

    403 shares
    Share 161 Tweet 101
  • The Good-Sufficient Fact | In direction of Knowledge Science

    403 shares
    Share 161 Tweet 101

About Us

Automation Scribe is your go-to site for easy-to-understand Artificial Intelligence (AI) articles. Discover insights on AI tools, AI Scribe, and more. Stay updated with the latest advancements in AI technology. Dive into the world of automation with simplified explanations and informative content. Visit us today!

Category

  • AI Scribe
  • AI Tools
  • Artificial Intelligence

Recent Posts

  • Advancing ADHD prognosis: How Qbtech constructed a cellular AI evaluation Mannequin Utilizing Amazon SageMaker AI
  • Prepare a Mannequin Quicker with torch.compile and Gradient Accumulation
  • Manufacturing-Prepared LLMs Made Easy with the NeMo Agent Toolkit
  • Home
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms & Conditions

© 2024 automationscribe.com. All rights reserved.

No Result
View All Result
  • Home
  • AI Scribe
  • AI Tools
  • Artificial Intelligence
  • Contact Us

© 2024 automationscribe.com. All rights reserved.